Abstract

Transparent conductive zinc oxide (ZnO) thin films were synthesized by a sol–gel spin coating method with the addition of Ga(NO3)3 in a Zn(CH3COO)2 solution and exposed to electron beam treatment. The UV–Vis spectra demonstrated that all of the films had transmittances of over 85% in the visible region. When Ga(NO3)3 was added to the ZnO precursor solution, the resistivity of the ZnO thin film decreased and the carrier concentration increased significantly. After electron beam treatment was performed on the 0.4 at.% Ga-doped ZnO film, the optical band gap increased and the resistivity significantly decreased resulting from the increases of the carrier concentration and mobility. By combining Ga doping and electron beam treatment, the resistivity of the ZnO thin film was reduced by a factor of nine hundred.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.