Abstract
We demonstrated in this study that the electrostatic interaction between nanocrystals (NCs) and polymers was dominant in the photophysical properties of their composites. This effect became more pronounced under illumination and in the presence of the carbazole moieties. The mechanism in which carbazole moieties influenced the PL properties was systematically investigated by means of steady-state fluorescence, fluorescence lifetimes, and ESR spectra. Our experimental results showed that the electrostatic interactions between CdTe NCs and polymers brought defects on the surface of NCs and hence led to the involvement of surface states in the carrier recombination process. Therefore, the composites were inclined to be oxidized when their net charges were slightly positive or negative. The optimal light emitting ratio of NCs to polymers was at the threshold point that NCs could be just completely transferred from the aqueous phase to the organic phase because the composite exhibited nearly electric neutrality at such a ratio. On the other hand, carbazole moieties had an important influence on the intrinsic recombination process of the CdTe NC's core states due to efficient electron transfer at the interface of the NCs and polymers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.