Abstract

Photon counting detectors (PCD) are widely credited with having minimum degradation from electronic noise compared to energy integrating detectors. However, they are not immune. We characterized the effect of electronic noise in simulated CdTe PCDs (0.25-1mm pixels) for spectral and effective monoenergetic tasks. Electronic noise was modeled as two separable effects - spectral blurring modeled as convolution with a Gaussian kernel with standard deviation of 7 keV, and false triggering of the lowest energy bin (depending on the threshold). To model false triggering, noise was created by filtering white Gaussian noise with a Gaussian pulse shaping kernel of 40 ns peaking time and, scaled to have a standard deviation of 7 keV, and analyzed numerically to obtain the mean and variance of false triggers at thresholds from 3 to 45 keV with ±3.5 keV hysteresis. PCDs had 5 energy bins, were operated at maximum of 20 % of characteristic count rate unless otherwise specified, and pulse pileup was not modeled. We assume the expected number of false triggers can be predicted and subtracted but that the noise from those events remains. Quantum and false triggering noise were propagated into basis material images using the Cramer-Rao Lower Bound. In basis material images, at the optimal threshold (balancing false triggers and lost true events) there was an 18-24% variance penalty compared to a detector with no electronic noise. For effective monoenergetic imaging, capturing low energy pulses performs asymptotically as well as a detector without electronic noise, with the penalty increasing with increasing energy threshold.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.