Abstract
We investigated electron spin relaxation with respect to the spatial electron–hole separation in GaAs/AlGaAs quantum wells at room temperature. The polarization dependent time-resolved photoluminescence method was used to measure the electron spin relaxation time by applying an electric field perpendicular to the quantum wells. The spin relaxation time had a strong electric field dependence and largely increased with an increase in the spatial electron–hole separation. These results cannot be explained by only the D’yakonov–Perel process, which has often been considered the cause of spin relaxation. We discuss the possible mechanisms that cause the spin relaxation by taking into account the electron–hole exchange interaction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.