Abstract
We analyzed the electrode geometry to obtain the potential (E) and current density (J) distributions at the surface of a skin phantom (SP), in this case a planar surface. Two electrode geometries were tested: a circular electrode (CiE) and a rectangular electrode (ReE). First, by a finite element simulation, we calculated the E and J distributions at the surface of the SP. Second, we determined the resistivity properties as a function of the electrochemical impedance. Three- and four-electrode configurations were used to measure the E versus distance between the reference electrodes (d). For the ReE, the electrolyte resistance (Re) measurements show a linear behavior with respect to “d” if the zone of the linear distribution of E and the homogeneous current density (JH) is considered. In contrast, the CiE shows nonlinear behavior due to the absence of that zone of the linear distribution of E and JH in the entire range. For ReE, we deduced that the behavior of Re versus “d” is related to the material resistivity. Consequently, the ReE geometry improves the Re measurements on the surface and shows us a way to control the behavior of this element in planar samples such as skin.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.