Abstract

We investigated the electrical polarizability of MgO and B2O3 containing bioactive glass (MBG). The MBG material with good manufacturing properties but low bioactivity was electrically polarized at a high dc field. The electrical polarizability of MBG was evaluated by thermally stimulated depolarization current (TSDC) measurements and immersion in simulated body fluid (SBF). The early precipitation of calcium phosphate on the negatively charged surface of the treated MBG demonstrated the increased bioactivity of the material and confirmed its polarizability. It is suggested that the electrical interactions between the polarized MBG and ions in SBF promoted the formation of the calcium phosphate precipitation. Accordingly, the increased bioactivity of the MBG in SBF is suggested to demonstrate the conversion of MBG into electrovector ceramics by the polarization treatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.