Abstract

In this study, the dependence of Cu electrochemical mechanical planarization (ECMP) rate on electric potential and mechanical force in electrolyte is investigated using potentiodynamic analysis, electrochemical impedance spectroscopy (EIS), and X-ray photoelectron spectroscopy (XPS). In chemical etching, CMP, electropolishing, and ECMP processes, the Cu removal rate is mainly affected by the interplay between electric potential and mechanical force. An equivalent circuit is built by fitting the EIS results to explain the behavior of Cu dissolution and Cu passive film. The Cu dissolution rate increased with decreasing charge-transfer time-delay. The resistance of the Cu passive film (Rp) is proportional to the intensity ratio of Cu2O/[Cu(OH)2+ CuO].

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.