Abstract

The effect of accumulation of dust and particulate matter onto the surface of photovoltaic cells has been experimentally investigated. Five kinds of dust having different physical properties were used. Three of them were limestone particulates with different classes and the other two were cement and carbon particulates. Details on the physical properties of each were obtained through size distribution analysis using an optical microscope. Well-controlled experiments were conducted using a solar simulator as a light source. The dust deposition density (g/m 2) was precisely determined in each test run. It has been concluded that fine particulates significantly deteriorate the performance of photovoltaic cells, more so than coarser particles. Cement, the main building material which may often present in the atmosphere of urban areas has shown to reduce both the short circuit current and output power when deposited onto the surface of photovoltaic cells. This is due to the very small diameter of its particles. Carbon particulates, which are generated from combustion process and emitted from diesel engines among the different dusts used, have shown to result in the worst deterioration of performance of photovoltaic cells, and higher a loss in power output.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.