Abstract

Abstract The nature and distribution of hard ceramic particles in composite materials influences the properties to greater extent. In the present work, the role of hard ceramic reinforced particles on the tribological behaviour of aluminum metal matrix composites consisting of single (SRP) and dual reinforced particles (DRP) is studied at different temperatures. Zircon sand and silicon carbide particles of size 20–32 μm were used as reinforcement in commercial grade LM13 piston alloy. Composites of dual reinforced particles in aluminum matrix (DRP-AMCs) were developed by mixing 15 wt% reinforced particles by two step stir casting technique. The wear behaviour of DRP-AMCs and SRP-AMCs (single reinforced particles aluminum matrix composite) was investigated using a pin-on-disc method at high temperatures under dry sliding condition. The microstructural examination of developed composites shows globular and finely distributed eutectic silicon in the vicinity of the reinforced particles. Metallographic investigation revealed that the wear zone of the SRP composite consisted of a hardened layer, which is responsible for high wear loss observed in the SRP composite. The results further indicate a transition in the wear mode that occurs after 150 °C for all composites. Study reveals that the dual reinforcement of particles enhances the wear resistance as compared to single reinforced particles if mixed in a definite ratio. A combination of 3% zircon sand and 12% silicon carbide particle reinforced composite exhibits better wear resistance as compared to other combinations at all the temperatures for low and high loads both.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.