Abstract

Drought stress is perhaps one of the most common abiotic factors which crop plants have to cope with. To survive, plants have to adapt to periods of water deficit that may occur during their vegetation. This can be achieved by triggering various changes in the plant genome, transcriptome, proteome, and metabolome, leading to different physiological and biochemical reactions of plants. We have compared changes in barley leaf and root metabolomes in response to drought in recombinant inbred line (RIL) population derived from hybrids between two spring genotypes: German variety Maresi and Syrian breeding line Cam/B1//CI08887/CI05761. Response of plants to drought of the studied barley lines was rather conservative; most barley genotypes changed their metabolome composition independently in leaf and root. Based on analysis of variance, metabolites were classified with respect to significance of difference between lines, drought effect (understood as the difference between metabolite level in drought and control plants), and line × drought interaction. The revealed changes in accumulation of some metabolites, e.g., proline and other amino acids, carbohydrates or carboxylic acids have been regarded to be a basic plant strategy for acquiring drought stress tolerance. It was possible to draw some general inferences from obtained results: changes of metabolites involved in barley response to drought were rather similar qualitatively but varied quantitatively among the studied RILs. Compatible solutes and osmolytes were the major group of compounds accumulated under drought. We have also observed significant organ specificity between leaf and root response to drought at the metabolome level in all recognized metabolites classes. Moreover, we have found metabolites which differentiated tested genotypes under drought—and these compounds might be considered as potential biomarkers associated with drought tolerance in barley.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.