Abstract

This study investigates the production of glucoamylase from Aspergillus niger in a submerged fermentation process using amylopectin fractionated from guinea corn starch as the carbon source. This work also studies the effect of a few metal ions (Ca2+, Zn2+, Co2+, Fe2+, Mn2+ and Pb2+) concentration on the glucoamylase activity. A Fourteen day experimental study was carried out to determine the day of highest glucoamylase activity. Maximum glucoamylase activity was observed on day five of the submerged fermentation; hence, day five was mass produced. The specific activity for the crude enzyme was found to be 729.45 U/mg. The crude enzyme was purified to the level of gel filtration (using sephadex G-100) via ammonium sulphate precipitation. Ammonium sulphate saturation of 70% was found suitable to precipitate the enzyme. After ammonium sulphate precipitation and gel filtration, the specific activities were found to be 65.98 U/mg and 180.52 U/mg respectively. The glucoamylase activity was enhanced by 2 mM to 5 mM of Ca2+, Co2+, Fe2+, Mn2+and Zn2+ but Pb2+ had inhibitory effect on the enzyme. The Michaelis constant, Km and maximum velocity Vmax of the enzyme was obtained from the Lineweaver-Burk plot of initial velocity data at different substrate concentrations. They were found to be 770.75 mg/ml and 2500 μmol/min respectively, when using cassava starch as substrate. The enzyme glucoamylase is known to have useful applications in food processing industries and fermentation biotechnology

Highlights

  • Glucoamylase belongs to the most important catalytically active proteins having broad possibilities of technical use

  • Optimum temperature The optimum temperature for glucoamylase activity was determined by incubating the enzyme with gelatinized starch solution (1%) at 30 to 80°C for 20 min at the predetermined optimal pH

  • Amylopectin yield Amylopectin fractionated from guinea corn starch was used as the carbon source for the extraction of glucoamylase from Aspergillus niger

Read more

Summary

Introduction

Glucoamylase (exo-1, 4-α-D-glucan-glucanohydrolase, EC 3.2.1.3) belongs to the most important catalytically active proteins having broad possibilities of technical use. Fermentation broth for the enzyme production Submerged fermentation (SmF) technique was employed using an Erlenmeyer flask containing 700 ml of sterile cultivation medium optimized for glucoamylase with 2.1 g (NH4)2SO3, 4.2 g KH2PO4, 0.7g MgSO4.7H2O, 0.07g FeSO4 and 7 g amylopectin from guinea corn starch.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.