Abstract

Ultra fast pulse evolution in a semiconductor quantum well structure (QWS) is theoretically analyzed using split-step Fourier method. The induced polarization in the medium has been obtained using Semiconductor Bloch equations. The non-linear Schrödinger equation is numerically solved by taking into account the induced polarization. So far, the pulse shape studies are based on the group velocity dispersion (GVD), third-order dispersion (TOD) and self phase modulation (SPM) effects. However, at high excitation intensity the group velocity also becomes intensity dependent. In the present analysis, the interplay of GVD, TOD and SPM leading to the change in pulse shape is studied giving due consideration to the intensity dependent group velocity of the medium. The result of numerical analysis made for a GaAs/AlGaAs QWS manifests significant influence of intensity dependent group velocity on the pulse shape.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.