Abstract

The effect of electrolysis operations on Ni-YSZ fuel electrode stability was studied at different current densities and fuel mixtures during 1000 h life tests. For a typical electrolysis mixture of 50% H2/50% H2O and 0.6 A cm−2 current density, cell ohmic resistance values were reasonably stable and no structural changes occurred. However, for more reducing conditions (97% H2/3% H2O), increasing the current density above 0.4 A cm−2 increased the ohmic resistance accompanied by significant electrolyte degradation including fracture and void formation at grain boundaries. Numerical analysis was carried out to determine the effective oxygen partial pressure across the electrolyte. The results show that the oxygen partial pressure values at high current density and low steam content may be low enough to reduce zirconia to form a Ni-Zr alloy product, initiating the observed electrolyte structural degradation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.