Abstract
This paper presents the effect of negatively charged silica nanoparticles (NPs) on the interfacial tension of the n-hexane-water system at variable concentrations of four different surfactants, viz., an anionic surfactant, sodium dodecyl sulfate (SDS), a cationic surfactant, cetyltrimethylammonium bromide (CTAB), and two nonionic surfactants, Tween 20 and Triton X-100 (TX-100). The presence of negatively charged silica nanoparticles is found to have a different effect depending on the type of surfactant. In the case of ionic surfactants, SDS and CTAB, silica NPs reduce the interfacial tension of the system. On the contrary, for nonionic surfactants, Tween 20 and TX-100, silica NPs increase the interfacial tension. The increasing/decreasing nature of the interfacial tension in the presence of NPs is well supported by the calculated surface excess concentrations. The diffusion kinetic control (DKC) and statistical rate theory (SRT) models are used to understand the behavior of dynamic interfacial tension of the surfactant-NP-oil-water system. The DKC model is found to describe the studied surfactant-NP-oil-water systems more aptly.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.