Abstract

ObjectivesThis study aimed to evaluate the effect of different materials and undercut on the removal force and stress distribution in the supporting tooth and in the circumferential clasp used in removable partial prosthesis. MethodsUpper molars prepared for Akers circumferential clasp with retention and opposing arm were modeled, scanned, elaborated with CAD software and the geometries imported in FEA and analyzed. Six different materials were selected for the clasp (Polyamide, Polyoxymethylene, Polyetheretherketone - PEEK, Gold alloy, Titanium and CoCr) and 3 different undercuts (0.25, 0.50 and 0.75mm), totaling 18 groups. ResultsThe clasps presented greater stress in their structure and potentially greater damage to the dental enamel when made with rigid materials and with more undercut; however, they presented greater ability to remain in position. SignificancePolyamide with a higher undercut is an esthetic alternative to rigid metallic clasps. It showed promising behavior because it strongly reduces the damage to the enamel, and even with an undercut of 0.75, the retention is lower than for CoCr with a 0.25 undercut, and this retention might still be sufficient. Polyoxymethylene and Polyetheretherketone (PEEK) are not suitable materials for the clasps, because the maximum stress occurring during removal with higher undercuts is higher than the material strength.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.