Abstract

Effects of dietary supplementation of Emblica officinalis fruit (Indian gooseberry) pomace (EFP), a waste from fruit processing plants and rich in polyphenolic compounds, were investigated for ruminal fermentation, nutrient utilization, methane production, and milk production performance in buffaloes. An in vitro experiment was conducted using 0 to 50g/kg of EFP (six treatments) to select an optimum dose for feeding of buffaloes. Organic matter (OM) degradability, total volatile fatty acid concentration, and acetate proportion decreased, but propionate proportion increased at the higher doses (> 30g/kg). Methane production also decreased at the higher doses (≥ 20g/kg). In the in vivo study, ten lactating buffaloes were randomly allotted into control and EFP groups (n = 5/group). The control group was fed a total mixed ration, whereas the EFP group was fed the control ration along with EFP at 20g/kg of dry matter (DM) intake for 120days. Feeding of EFP to buffaloes improved milk yield (P < 0.01) and milk production efficiency (P < 0.01). Concentration of milk protein tended (P = 0.071) to increase and that of solid not fat increased (P = 0.032) due to the EFP feeding. Yields (kg/day) of milk fat (P = 0.026), solid not fat (P = 0.011), and protein (P = 0.002) were greater in the EFP group than the control group. Somatic cell count in milk decreased (P = 0.032) due to EFP feeding. Digestibility of ether extract (P < 0.001) increased and OM (P = 0.051) tended to increase by EFP feeding. Methane production (g/d), yield (g/kg DM intake or g/kg digestible organic matter intake), and intensity (g/kg milk, g/kg milk fat, or g/kg milk protein), and methane conversion rate (percentage of gross energy intake) were lower (P < 0.01) in the EFP group than the control group. For milk fatty acid (FA) profiles, total saturated FA proportion tended to be greater (P = 0.057) in the EFP group than the control group, which was due to increased (P = 0.045) proportion of total short- and medium-chain FA (C4 to C14). Feed intake, digestibility of crude protein and fiber, and total n-6, n-3, mono-unsaturated FA, poly-unsaturated FA, and long-chain FA (C18 to C24) proportions were similar between the groups. This study suggests that feeding of EFP at 20g/kg DM intake increases milk production and decreases methane production and intensity without impacting health of buffaloes and FA profiles of milk. This is a win-win situation for sustainable and cleaner buffalo production by improving milk production and decreasing environmental burdens of greenhouse gas emission and EFP residue disposal problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.