Abstract

The objective of the study was to investigate the fractional rate of volatile fatty acid (VFA) absorption and the expression of genes encoding for transporters and enzymes involved in the absorption and metabolism of VFA in ruminal tissue when cattle were fed high or low concentrate diets. Twelve ruminally cannulated Holstein cows were used in a randomized complete block design. The low concentrate (LC) and high concentrate (HC) diets contained 8 and 64% dietary concentrate (dry matter basis), respectively. Cows were fed their respective diet for at least 28 d, following which data and samples were collected over 6 d. Ruminal pH was measured continuously for 72h, and the in vivo VFA absorption and passage rates were measured using Co-EDTA and n-valeric acid as markers. Ruminal tissue was collected postslaughter from the ventral sac of the rumen, and gene expression was evaluated using quantitative real-time PCR. Dry matter intake was not affected by treatment, averaging 14.9 kg/d, but cows fed HC had lower mean ruminal pH (6.03 vs. 6.48), and a greater duration (376 vs. 10 min/d) that ruminal pH was <5.8. Ruminal VFA concentration was 24mM higher for cows fed HC compared with LC; however, the fractional rate of VFA absorption and passage from the rumen was not affected by dietary treatment, averaging 23.4 and 9.6%/h, respectively. The expression of genes encoding for enzymes involved in VFA activation and ketogenesis were not affected by treatment. Cows fed HC tended to have a relative abundance of pyruvate dehydrogenase lipoamide α 1 mRNA transcripts that was 1.4 times lower than that of cows fed LC, but other enzymes involved in pyruvate metabolism or regulation of the citric acid cycle were not affected. Collectively, these results suggest that the dietary forage to concentrate ratio does not affect the fractional rate of VFA absorption in vivo, but potentially alters energy metabolism in ruminal tissue.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.