Abstract
AbstractChitosan has emerged as a unique biomaterial, possessing scope in diverse applications in the biomedical, food and chemical industries. However, its high molecular weight is a concern when handling the polymer. Various techniques have been explored for depolymerization of this polymer, wherein enzymes have emerged as the most economic method having minimum degrading effect on the polymer and resulting in formation of side products. Chitosan can be depolymerized using a broad range of enzymes. In this study, various enzymes like α‐amylase, papain, pepsin and bromelain were employed to depolymerize chitosan and convert it into its lower molecular weight counterpart. Further, attempts were made to elucidate the process of depolymerization of chitosan, primarily by determining the change in its viscosity and hence its molecular weight. The process of depolymerization was optimized using a one‐factor‐at‐a‐time approach. The molecular weight of the resultant chitosan was estimated using gel permeation chromatography and infrared spectroscopy. These studies revealed a considerable decrease in molecular weights of chitosan depolymerized by pepsin, papain, bromelain and α‐amylase, resulting in recovery of the low‐molecular‐weight chitosan of 76.09 ± 5, 74.18 ± 5, 55.75 ± 5 and 49.18 ± 5%, respectively. Maximum yield and depolymerization were obtained using pepsin and papain due to their enzymatic recognition pattern, which was also validated using studies involving molecular dynamics. © 2019 Society of Chemical Industry
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.