Abstract

The effect of different frequencies of defoliation on arbuscular mycorrhizal fungal (AMF) colonization and external hyphae production of three perennial grass species growing in pot culture in a non-sterile soil was investigated. Roots were assessed by acid fuschin staining and succinate dehydrogenase activity to obtain measurements of total and metabolically active AMF colonization. The grass species, Digitaria eriantha, Lolium perenne and Themeda triandra are of similar bunch morphology and responded to defoliation with massive root death. In Themeda defoliation was also associated with a decline in leaf growth rate, phosphorus accumulation in new leaf tissue, AMF colonization and external hyphae densities. In Digitaria and Lolium, AMF colonization declined but external hyphal densities were unaffected by defoliation frequency. In these two species phosphorus accumulation and leaf regrowth rates were also unchanged by defoliation. Only in Lolium did defoliation result in slightly more inactive AMF colonization. The results suggest that Lolium and Digitaria which are pasture species are better able to compensate for root loss following fairly frequent defoliation by maintaining an external AMF hyphal network. Themeda, a rangeland grass, which is more intolerant of grazing, has a lower capacity for sustaining its hyphal network when defoliated. Grazing is therefore likely to affect community dynamics because of variable effects of defoliation frequency on the mycorrhizal symbiosis of different plant species.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.