Abstract

Biotransformation of fatty acid methyl esters to dicarboxylic acids has attracted much attention in recent years; however, reports of sebacic acid production using such biotransformation remain few. The toxicity of decanoic acid is the main challenge for this process. Decane induction has been reported to be essential to activate the enzymes involved in the α,ω-oxidation pathway before initiating the biotransformation of methyl decanoate to sebacic acid. However, we observed the accumulation of intermediates (decanoic acid and 10-hydroxydecanoic acid) during the induction period. In this study, we examined the effects of these intermediates on the biotransformation process. The presence of decanoic acid, even at a low concentration (0.2 g/L), inhibited the transformation of 10-hydroxydecanoic acid to sebacic acid. Moreover, about 24–32% reduction in the decanoic acid oxidation was observed in the presence of 0.5–1.5 g/L 10-hydroxydecanoic acid. To eliminate these inhibitory effects, we applied substrate-limiting conditions during the decane induction process, which eliminated the accumulation of decanoic acid. Although the productivity of sebacic acid (34.5 ± 1.10 g/L) was improved, by 28% over that achieved using the previously methods, after 54 h, the accumulation of 10-hydroxydecanoic acid was still detected. The accumulation of 10-hydroxydecanoic acid even under the decane limiting conditions could be an evidence that oxidation of 10-hydroxydecanoic acid could be the rate-limiting step in this process. The improvement of this reaction should be an important objective for further development of the production of sebacic acid using biotransformation.

Highlights

  • Sebacic acid, a 10 carbon containing dicarboxylic acid (DCA), is an important precursor in the production of nylon and polyamides (PAs), primarily PA-4,10 and PA-5,10 (Chung et al 2015)

  • The purpose of slower substrate feeding rate was to allow the cells to adapt to the toxicity of decanoic acid, which was produced from methyl decanoate

  • As observed in previous studies, decane induction was necessary for the activation of enzymes involved in the α,ω-oxidation pathway prior to the biotransformation of methyl decanoate to sebacic acid (Beardslee et al 2014)

Read more

Summary

Introduction

A 10 carbon containing dicarboxylic acid (DCA), is an important precursor in the production of nylon and polyamides (PAs), primarily PA-4,10 and PA-5,10 (Chung et al 2015). The biological production of DCAs, especially via diterminal oxidation by hydrocarbon-degrading microorganisms or metabolic engineering of other. The mechanisms of oxidation in this pathway have been extensively studied (Eschenfeldt et al 2003; Cheng et al 2005; Huf et al 2011; Werner and Zibek 2017). This biotransformation process appears to be more feasible today for producing DCAs, and metabolic engineering of E. coli could be a breakthrough technology for production of these compounds either from glucose or fatty acids in the future

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.