Abstract

Cytochalasin-D (Cyto-D) and latrunculin-A (Lat-A) are known inhibitors of actin microfilaments and adversely affect the physiological functions of anchorage-dependent cells. Alternatively, doxorubicin (Dox), a chemotherapeutic drug is known to induce apoptosis and cell detachment of tumor cells. However, the intricate interplay between drug administration, cytoskeletal rearrangement and biophysical responses of live cells on immobilized layer of extracellular matrix (ECM) protein remains unknown. In this study, the deadhesion kinetics and actin remodeling of live HepG2 cells following the addition of the three drugs are probed with confocal reflectance interference contrast microscopy (C-RICM) and fluorescence confocal microscopy. First, it is shown that the reduction in two-dimensional spread area of HepG2 cells is 10.5%, 15.4% and 21.9% under the influence of 5 μM of Lat-A, Cyto-D and Dox, respectively. Secondly, C-RICM demonstrates the recession of strong adhesion contact against time of cell seeding upon the addition of the three drugs. Thirdly, the initial cell detachment rate and extent of reduction in the degree of cell deformation ( a/ R) are dependent on both the drug types and concentration. Lastly, oscillation-like responses of a/ R and adhesion energy are uniquely found in Lat-A induced cell detachment. Overall, our biophysical approaches have been proven as a highly quantitative platform for elucidating the interfacial properties of adherent cells on biomimetic surfaces under cytoskeleton disruption.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.