Abstract

We fabricated polymer bulk heterojunction solar cells with blends of poly (2-methoxy-5-(2′-ethylhexyloxy)-1,4-phenylenevinylene) (MEH-PPV) and [6,6]-phenyl C 61 butyric acid methyl ester (PCBM) by using CsF as an interlayer. Under illumination, the device with Al/CsF cathode exhibited a higher energy conversion efficiency compared to the Al/LiF cathode. The performance improvement with the Al/CsF cathode comes from the lower series resistance, which is almost constant (~6 Ω cm 2) for all the CsF layer thicknesses included in the present study. The mechanism responsible for this phenomenon is attributed to the dissociation of CsF upon Al deposition to liberate Cs with a low work function, which reduces the interface resistance of the active layer/cathode and enhances the interior electric field for more efficient charge transport in the device.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.