Abstract

High-crystalline Na1.1V3O7.9 nanoplates were synthesized by a facile sol-gel reaction followed by calcination. The microstructure and crystallinity of the nanoplates were primarily determined by calcination temperature. The maximum crystallinity Na1.1V3O7.9 sample was calcined at 500 °C was calculated by XRD, and the DSC demonstrated that the amorphous transformation temperature begins at 550 °C. The XPS spectrum confirmed the presence of Na1.1V3O7.9 and consistent with the XRD test results. The SEM/TEM test illustrated the crystal particle growth of the Na1.1V3O7.9 nanoplates. Electrochemical results showed that the maximum crystallinity Na1.1V3O7.9 sample prepared at 500 °C exhibited the optimum performance when evaluated as a cathode material for lithium-ion batteries: the discharge capacity was maintained at 195 mAh g−1 after 150 cycles at a current of 100 mA g−1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.