Abstract

We analyze the stability of small bubbles in a closed system with fixed volume, temperature, and number of molecules. We show that there exists a minimum stable size of a bubble. Thus there exists a range of densities where no stable bubbles are allowed and the system has a homogeneous density which is lower than the coexistence density of the liquid. This becomes possible due to the finite liquid compressibility. Capillary analysis within the developed "modified bubble" model illustrates that the existence of the minimum bubble size is associated to the compressibility and it is not possible when the liquid is strictly incompressible. This finding is expected to have very important implications in cavitation and boiling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.