Abstract
Aniline is widespread in groundwater and of great toxicity. Advanced oxidation processes, such as the ferrous iron (Fe2+)-activated persulfate process, have been proven to be effective for organic pollutants. However, few studies have focused on the effects of coexisting ions on the degradation of aniline. In this study, the degradation efficiency of aniline and the effects of common inorganic ions (CO32−, PO43−, HCO3−, SO42−, NO3−, Na+, K+, Mg2+, and Ca2+) on aniline degradation were examined. Under the optimum operating conditions, 86.33% aniline degradation (C0 = 11 mmol/L) was observed within 60 min. The effects of cations on aniline degradation were negligible. Anions decreased the removal efficiency of aniline because of the radicals generated by the reaction between sulfate radical or hydroxyl radical and these anions. As the concentrations of PO43−, CO32−, SO42−, HCO3−, and NO3− increased from 0 mmol/L to 5 mmol/L, the removal efficiency of aniline decreased to 19.72%, 24.56%, 66.76%, 68.76%, and 82.42%, respectively. The order of inhibitory effects was PO43− > CO32− > >SO42− > HCO3− > >NO3−.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.