Abstract

Jet quenching is a powerful tool to study medium properties of relativistic heavy ion collisions via jet-medium interactions. Jet quenching studies have so far focused on high transverse momentum (pT) particle suppression. Jet shapes at low to intermediate pT, containing rich information on jet-medium interactions, have been less explored. In this talk, I will present a recent study, using a multiphase transport (AMPT) model, of effects on particle correlations from collisional energy loss of partons traversing the heavy ion medium. We follow the parton cascading history so that medium partons (associated particles) which have interacted with a high-pT probe parton (hard probe trigger particle) can be uniquely identified and hence no subtraction of combinatorial background is needed. Results on particle correlation shapes will be presented as a function of pT, the number of parton-parton collisions suffered by the probe parton, and the azimuthal angle of the probe parton relative to the reaction plane. These results reveal pathlength dependence of collisional energy loss.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.