Abstract

Coil embolization is a mildly invasive endovascular method for treatment of a cerebral aneurysm. The presence of a coil reduces fluid loading of the blood vessel and delays further deformation of the walls. Its effectiveness depends on the coil porosity and permeability apart from the nature of flow pulsations and its geometry. In the present work, a three dimensional numerical study of pulsatile flow of blood through an artery with saccular cerebral aneurysm is reported. The flow is unsteady but is taken to be laminar and incompressible. The coil is treated as homogeneous and isotropic porous medium. A comparative study has been carried out on aneurysms with and without a coil insert considering blood as a non-Newtonian fluid. The simulation is carried out for Reynolds numbers Re = 500 and 1500. Results show that the velocity magnitude within the coil embolized aneurysm becomes negligible after coil insertion. The wall shear stress within the aneurysm decreases to a great extent for both Reynolds numbers. Pressure levels remain relatively unchanged. Overall, reduced wall loading with a coil stabilizes the growth of the aneurysm and thus provides an advantage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.