Abstract

A theoretical model to describe the dislocations emitted from the crack tip and penetrating the coherent twin boundary (CTB) in nanotwinned materials under cyclic far field shear stress was proposed in this paper. The dislocations emitted from the tip are subjected to four stresses: the shear stress on the primary slip plane generated by applied stress, the image stress which drives the dislocation glide to the surface of the crack, the back stress from the other dislocations and the lattice friction stress. Combining the theory of continuously distributed dislocation, we developed a method to analyze the dislocation movement from the crack tip under cyclic far field shear stress and derived the calculation method of fatigue crack growth rate in nanotwinned materials. It can be figured out that the fatigue crack growth rate is dependent on the applied stress, the lamellae thickness and the angle between slip system and CTB. When the critical conditions are satisfied, the dislocation piling up around the CTB will penetrate the CTB, the critical stress can be calculated as a function of the misorientation angle and the lamellae thickness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.