Abstract

Neutral poly(N-isopropylacrylamide) (PIPAAm), poly(N,N-diethylacrylamide) (PDEAAm), and poly(N-isopropylmethacrylamide) (PIPMAm) hydrogels and their weakly charged counterparts prepared by copolymerizing with sodium methacrylate (x(MNa)=0,0.025,0.05) were studied using ultrasmall-angle x-ray scattering. The volume-phase transition in hydrogels was observed as an increase in the inhomogeneity correlation length of the networks. The change in inhomogeneity correlation length was abrupt in neutral PIPAAm and PIPMAm gels with increase in temperature but was continuous in neutral PDEAAm gels. Addition of ionic comonomer to the network backbone suppressed the volume-phase transition in poly(N-alkylacrylamide)s but not in PIPMAm. The observed differences in temperature-induced volume change of these three polymers in water cannot be rationalized based on their relative hydrophobicity and are instead explained by considering the hydrogen-bonding constraints on their thermal fluctuations. Both PIPAAm and PDEAAm undergo volume collapse since their thermal fluctuations are constrained by hydrogen bonding with water to an extent that beyond a critical temperature they seek entropic compensation. Although thermal fluctuations in both PIPAAm and PIPMAm are equally constrained, thermal energy of the latter can be relaxed via the rotation of alpha-methyl groups allowing it greater flexibility. Compared to N-alkylacrylamides, N-alkylmethacrylamide can thus sustain hydrogen bonding to relatively higher temperatures before seeking entropic compensation by undergoing volume collapse.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.