Abstract

In this research, n-type (Bi2Te3)1−x(Bi2Se3)x-based thermoelectric (TE) materials were produced through a gas atomization process, and subsequently hot extruded with an extrusion ratio of 10:1 at 400 °C. The effect of chemical composition on TE properties was investigated. The microstructure of all extruded bars showed a homogeneous and fine distribution of grains due to the dynamic recrystallization during the hot extrusion process. With increasing Bi2Te3 content, from 0.85 to 0.90, both electrical resistivity and Seebeck coefficient values were increased. The maximum figure of merit (ZT) 0.673 was obtained at room temperature for (Bi2Te3)0.90(Bi2Se3)0.10 alloys due to them exhibiting higher seebeck coefficient and lower thermal conductivity than other compositions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.