Abstract

We use dynamic light scattering to investigate the effects of charge polydispersity and charge residence time on the dynamics of a micellar system. While in the corresponding uncharged system only one exponential relaxation is observed, two relaxation modes are seen when charging the micelles by adding charged co-surfactant molecules with a long residence time. We attribute the existence of these two relaxation modes to the combined effect of size polydispersity and charge polydispersity, i.e. frozen fluctuations of the number of charges per micelle. Further support to this scenario is provided by control experiments on a similar charged system, but where the charge residence time is short compared to the time scales probed by dynamic light scattering. Here, charge polydispersity is effectively suppressed due to the rapid exchange of charged molecules between micelles and only one single relaxation mode is seen, thereby demonstrating the key role of frozen charge fluctuations in the complex dynamics of our micellar system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.