Abstract

An oxide p—n heterojunction composed of Pr0.6Ca0.4MnO3 film, with a charge order (CO) transition, and 1wt% Nb-doped SrTiO3 substrate is fabricated, and the transport properties of the interface are experimentally studied. The rectifying behavior of the junction, well described by the Newman equation, is observed, indicating that tunneling is the dominant process by which the carriers pass through the interface. Above and below the CO transition temperature, satisfactory linear dependencies of junction resistance on temperature are observed, but the slopes of the two resistance-temperature relations are different. The CO process is believed to be relevant to this difference.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.