Abstract

One of the most important nonlinear rheological phenomena in flowing polymeric materials is the stress overshoot under start-up shear at sufficiently high shear rates γ, i.e., γ > τd–1, where τd is the terminal relaxation time of system. According to the well-known tube theory for entangled polymeric materials, a linear relationship between the anisotropy of the stress and that of the birefringence holds for strain rates in the τd–1 < γ < τR–1 range, where τR is the Rouse time. This implies that in such a flow range the stress overshoot behavior of entangled polymers is accurately described in terms of the chain orientation, as confirmed by previous experiments. However, there has been some recent debate on this issue, following the study of Lu et al. [ACS Macro Lett. 2014, 3, 569−573], whose coarse-grained molecular dynamics simulations produced results in apparent conflict with existing theoretical and experimental predictions, which had suggested that even for γ < τR–1, the stress overshoot is asso...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.