Abstract

A series of CeO 2-doped CuCl 2-KCl/MgO-γ-Al 2O 3 catalysts were prepared and characterized by BET, XRD, H 2-TPR, FTIR-pyridine adsorption, NH 3-TPD and XPS techniques. XRD, BET and TPR results show that three types of ceria species exist on the surface of catalysts: dispersed ceria, small aggregated crystalline CeO 2 species and large ceria particles. It was found that copper-based catalysts modified with small aggregated crystalline ceria species exhibited higher conversion of ethane and selectivity to vinyl chloride compared to copper-based catalysts with dispersed ceria or large ceria particles. The promotional effects may be originated from the formation of large amount of surface capping oxygen species (O 2 − or O −) due to structural defects and electronic properties of nonstoichimetric ceria. Moreover, these surface capping oxygen species accelerate oxidation of part of Cu + to Cu 2+, which are responsible for the increase of intermediate Cl 2 species in the process of ethane oxychlorination. NH 3-TPD results show that the catalysts modified with small aggregated crystalline ceria species have a large amount of weak acidic sites on the surface, and these weak acidic sites benefit dehydrochlorination of dichloroethane. The activity tests revealed that the copper-based catalyst with cerium content x = 5 wt.% exhibited the highest activity due to the excellent coordination effect between ceria and copper species and the largest amount of weak acid sites for breaking C–H bonds and dehydrochlorination of dichloroethane.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.