Abstract

A hybrid oxidation–coagulation process is commonly adopted to destabilize algae and subsequently improve the removal of algae from water through sedimentation and filtration in water treatment plants (WTPs). Preoxidation is crucial to improving algae removal by a coagulation–sedimentation process. The goal of this study was to investigate the effect of oxidation with NaOCl and ClO2 on the cell integrity of algae (i.e. diatoms) and the destabilization of algae by means of Alum coagulation. The effects of oxidation-assisted coagulation on the performance of sedimentation as well as filtration were evaluated. The results show that ClO2 reduces cell integrity more severely than NaOCl during oxidation. The degradation of chlorophyll a and humic-like substances generated by cells ruptured by ClO2 oxidation is stronger than that by NaOCl oxidation. During oxidation both NaOCl and ClO2 fail to cause significant cell lysis, while cell settleability can be improved markedly by using only ClO2. Preoxidation with ClO2 is more effective in destabilizing the particles and algae when applying Alum coagulation at low dosages. It was found that the residual algae counts in the supernatants are inversely well-correlated to its filterability instead of its residual turbidity. The reduced cell integrity resulting from ClO2 preoxidation effectively improves the performance of coagulation–sedimentation for algae (diatoms) removal and reduces the burden of filtration operation in the WTPs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.