Abstract

The effect of aging and CDP-choline treatment (20mgkg−1 body weight i.p. for 28days) on the maximal rates (Vmax) of representative mitochondrial enzyme activities related to Krebs’ cycle (citrate synthase, α-ketoglutarate dehydrogenase, malate dehydrogenase), glutamate and related amino acid metabolism (glutamate dehydrogenase, glutamate–oxaloacetate- and glutamate–pyruvate transaminases) were evaluated in non-synaptic and intra-synaptic “light” and “heavy” mitochondria from frontal cerebral cortex of male Wistar rats aged 4, 12, 18 and 24months.During aging, enzyme activities vary in a complex way respect to the type of mitochondria, i.e. non-synaptic and intra-synaptic. This micro-heterogeneity is an important factor, because energy-related mitochondrial enzyme catalytic properties cause metabolic modifications of physiopathological significance in cerebral tissue in vivo, also discriminating pre- and post-synaptic sites of action for drugs and affecting tissue responsiveness to noxious stimuli.Results show that CDP-choline in vivo treatment enhances cerebral energy metabolism selectively at 18months, specifically modifying enzyme catalytic activities in non-synaptic and intra-synaptic “light” mitochondrial sub-populations. This confirms that the observed changes in enzyme catalytic activities during aging reflect the bioenergetic state at each single age and the corresponding energy requirements, further proving that in vivo drug treatment is able to interfere with the neuronal energy metabolism.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.