Abstract

This work is pertaining to the synthesis of fine magnesium aluminate spinel (MgAl2O4) powders of varied trivalent:bivalent cation ratio along line of homogeneity of the solid solution (MgO. xAl2O3, x = 1, 1.25, 1.50, 1.75, and 2) via gel combustion method. Magnesium- and aluminum- nitrate were used as the oxidants in combustion reaction fuelled by urea in combination with stoichiometric formaldehyde solution acting as reductant. Synthesized powders were characterized in terms of microscopic analysis and optical absorbance measurements. The cation ratio, through a change in gel structure influences the nature of crystallization of the product, while on the other hand does not affect grain shapes and sizes. Distinct enhancement in both absorption intensity and the corresponding estimated energy band gap has been observed against increasing excess than stiochiometric alumina concentrations. Evaluated optical band gaps were widened in proportion to the Al: Mg ratio which may be attributed to Burstein-Moss effect in consequence of substitutional insertion of introduced Al3+ ions in spinel lattices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.