Abstract

Recent information indicates that large, sustained wall shear stress gradients are a dominant hemodynamic parameter associated with the location and severity of atherosclerosis and myointimal hyperplasia. This study computes the spatial values of wall shear stresses and their gradients for three carotid artery bifurcation geometries. A computational fluid dynamics program was used to solve the transient two-dimensional partial differential equations that describe fluid flow. Blood was treated as both a Newtonian and a non-Newtonian incompressible fluid. Solutions for the velocities, wall shear stresses, and wall shear-stress gradients were obtained for three carotid bifurcation geometries: a normal carotid bifurcation (similar to a primarily reconstructed carotid endarterectomy), a patch-reconstructed carotid endarterectomy, and a gradually tapered, low-angle carotid bifurcation (no carotid bulb). Computed velocity profiles closely match published experimental ones. Disturbed flow velocities are largest in the bulb segment of the normal carotid bifurcation. Peak and minimum wall shear stresses and peak shear stress gradients occurred in the lateral internal carotid artery wall. These were binodal in the normal or primarily reconstructed carotid artery, localized at the distal end of the patch-reconstructed carotid bifurcation, and minimal in the smooth, tapered carotid bifurcation. Wall shear stresses and their gradients were slightly higher for non-Newtonian than Newtonian fluids in the normal carotid artery but were similar in the other two geometric configurations. These results indicate that flow disturbances in general and wall shear stress gradients in particular are markedly reduced in carotid artery bifurcations that are smooth and gradually tapered and do not have a bulb. Abrupt geometric wall changes such as those occurring in the normal carotid bulb and at the distal end of a patch-reconstruction after carotid endarterectomy are harbingers of disturbed flow and high wall shear stress gradients. These results suggest that carotid endarterectomy reconstruction geometry characterized by a gradually tapered internal carotid artery may minimize the hemodynamically induced component of early myointimal hyperplasia and thrombosis and late atherosclerotic restenosis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.