Abstract
Abstract Sodium carbonate and carboxymethyl cellulose powders are compressed into two-component tablets with three mass ratios, 97%:3%, 95%:5% and 93%:7%. The dissolution tests for two-component tablets and reference pure sodium carbonate tablets are carried out at various temperatures. The dissolution process of each tablet is measured by electrical conductivity tracking method and the concentration of dissolved sodium carbonate is quantified with calibrated conductivity-concentration converting equation of sodium carbonate. The quantified dissolution data is fitted with both surface reaction model and diffusion layer model and the results clearly show that surface reaction model is suggested as the appropriate dissolution model for all measured tablets. Therefore, it is determined that carboxymethyl cellulose is a stable element to remain the dissolution mechanism of tablet unchanged. The dissolution rate constant quantified with surface reaction model presents that carboxymethyl cellulose-sodium carbonate two-component tablets obtain significant higher dissolution rate constant than pure sodium carbonate tablet and higher proportion of carboxymethyl cellulose leads to apparent higher dissolution rate constant. The results prove for the usage of carboxymethyl cellulose in most practical applications at a relative low-level, the effect of carboxymethyl cellulose is effective and positive for two-component tablet to enhance the dissolution process and improve dissolution rate constant and this effect is speculated coming from its dynamic physical transforming process in water including dilation and conglutination.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.