Abstract

The electrical and piezoresistive sensing characteristics of polymeric composites incorporating carbon nanotube (CNT) and carbonyl iron powder (CIP) were investigated in this study. A novel manufacturing method was introduced to effectively and uniformly disperse CNT and CIP into polymeric composites. Five different CNT proportions and three different CIP proportions were considered to explore the synergistic effects of CNT and CIP incorporation on the electrical and the piezoresistive sensing characteristics of the composites. Piezoresistive sensing characteristics (e.g., electrical resistance changes, time-based peak shifts, R-square values) of the composites were observed, and the effect of the magnetization on their piezoresistive sensing characteristics was also examined. The incorporation of CIP into CNT-embedded polymeric composites was shown to improve the piezoresistive sensing characteristics of the polymeric composites under cyclic tensile strain loads.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.