Abstract

The effect of carbon to nitrogen ratio (C/N) of the feed on the physical and surface chemical properties of activated sludge is investigated. Semi‐continuous reactors with 2 liters volume were operated at a mean cell residence time of 8 days. These mixed culture reactors were operated at 3 different carbon to nitrogen ratio. The operation of conventional activated sludge plants treating municipal wastewater is represented with reactors having a C/N ratio of 21 (in terms of the ratio of COD to TKN). Carbon and nitrogen limited activated sludge systems are represented by reactors with a C/N ratio of 9 and 43, respectively. The results show that C/N ratio has a profound effect on the ultimate physical and surface chemical properties of activated sludge. Both the steady state microorganism concentration and the amount of microbial extracellular polymers produced increase with increasing C/N ratio. The sludge becomes much harder to dewater and settle and it becomes more viscous as the C/N ratio increases. A decrease in surface hydrophobicity and an increase in surface charge of the sludge accompany these physical changes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.