Abstract

We investigate the effect of carbon (C) on helium (He) trapping in tungsten (W) using a first-principles method. We show C can effectively reduce the solution energy of He in the bulk W originated from the charge density redistribution. This leads to a strong attraction between He and C in W. We demonstrate the C–vacancy (C–V) complex can serve as a trapping center by reducing charge density in its vicinity to induce He nucleation in comparison with the defect-free W. The maximal number of He atoms that can be trapped by such C–V complex is 5, and He diffusion into the C–V complex is kinetically feasible. Further, it is found the binding energy of He to a C–V complex is weaker than that to a C-free vacancy, suggesting C will decrease the He trapping capability of vacancy. We thus propose that C plays a key role in He trapping behavior.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.