Abstract

Carbon Nanotubes (CNTs) were dispersed in a cement-sand-based piezoelectric smart composite as conductive fillers to improve its poling efficiency, leading to a desirable piezoelectric effect. By introducing a small amount of CNTs, continuous electric networks between Lead Zirconate Titanate (PZT) particles were created, thus making the composite poling easier. Specimens were prepared by mixing PZT powders, Portland cement and sand with CNTs, followed by pressing it with a load frame system. The effect of quantity of CNTs ranging from 0 to 1.0 volume percent on properties of the composite, including its piezoelectric coefficient, dielectric constant and loss, and sensing effects, were characterized. It was found that the addition of CNTs facilitated effective poling at room temperature and improved the piezoelectric and dielectric properties of the composite. The composite modified by CNTs achieved optimal properties when the CNTs content was 0.7 vol.%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.