Abstract

Abstract Li 4 Ti 5 O 12 (LTO)/carbon nanotubes (CNTs) composite material is synthesized based on a solid-state method by sand-milling, spray-drying and calcining at 850 °C under N 2 flow. The LTO/CNTs samples with 1 wt% and 3 wt% weight ratio of CNTs addition and the pristine LTO sample are prepared. The rate performance and the thermal stability of these samples are investigated based on LiMn 2 O 4 (LMO)/LTO full-cell. The results show that the weight ratio of CNTs addition has distinct effect on LTO performances. The composite materials of LTO composited CNTs have better performance at high-rate due to the intercalation enhancement by conductive network of CNTs. At second, the overcharging temperature response of the cell's surface with 1 wt% CNTs addition is the lowest. The particle size distribution is measured and the most uniform particles are obtained with 1 wt% CNTs addition. This trend could explain that the medium quantity of CNTs is optimal to improve the heat and mass transfer and prevent the problems of crystallite growing interference and aggregation during the calcination process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.