Abstract

The purpose of the present study was to examine the changes in the molecular chaperone calreticulin (CRT), calcium signaling pathway Ca(2+)-calmodulin (CaM)-CaM kinaseIIα (CaMKIIα), and the endoplasmic reticulum (ER) apoptotic modulator caspase-12 in hippocampal neurons of rats exposed to single-prolonged stress (SPS), a model of post-traumatic stress disorder (PTSD). Molecular markers and proteins were assessed using immunohistochemistry, western blot and reverse transcript-polymerase chain reaction in rats exposed to SPS at 1 day (1d), 4 and 7 days post-stress and time matched controls. We found that at 7 days, SPS rats had the highest CRT expression. The intracellular free Ca(2+) and the CaM expression reached peak at 1 day post-SPS whereas the CaMKIIα had the opposite trend. Caspase-12 was most active at 4 days and was found to decrease thereafter. Signs of apoptosis were identified using transmission electron microscopy in the rats exposed to SPS. The results indicate that signs of ER stress in the hippocampus of rats exposed to SPS trigger the molecular changes in the intracellular cytoplasm which in turn activate the apoptotic pathway through caspase-12. Therefore, we propose that the hippocampal apoptosis could be one of the pathological mechanisms related to the memory disorders in PTSD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.