Abstract

This study reports the base-catalyzed aqueous sol-gel synthesis of zinc oxide nanoparticles. The solution was primarily comprised of zinc nitrate hexahydrate as a metal precursor, isopropyl alcohol and water as solvents, and glycerin as a stabilizing agent. The effect of calcination temperature on the structure and morphology of the prepared nanoparticles was investigated by varying the calcination temperature from 500 to 900 °C. The X-ray diffraction analysis, infrared spectroscopy, thermogravimetric analysis, and field emission scanning electron microscopy were employed to determine the crystal structure, surface functional groups, thermal stability, and surface morphology of the nanoparticles. The particle size was found to be directly proportional to the calcination temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.