Abstract

Effect of calcination temperature on the synthesis of N, Fe codoped TiO2for the photodegradation of methylene blue under ordinary visible lamps was investigated. The photocatalyst were prepared using solgel method where titanium isopropoxide was used as precursor of titania. The calcination temperatures were varied from 450 to 600°C. The prepared photocatalysts were characterized by using XRD, FE-SEM and FTIR to determine their physical properties. The results from XRD proved that photocatalysts calcined at 600°C possessed perfect properties in phase and crystal size. FE-SEM image analysis revealed the formation of the fine spherical particles and the FTIR analysis verified the presence of dopants at various calcination temperatures. The effectivity of photocatalysts was tested by performing a standard batch photocatalytic degradation experiment with methylene blue as a model pollutant under ordinary visible light. The result showed that N and Fe codoped photocatalyst calcined at 600°C (1.0 % N, Fe-TiO2-600) yielded a maximum of 80.50% methylene blue degraded within five hours of irradiation time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.