Abstract

Polyphenol, though used as antioxidants in food industry, suffers from poor solubility issues in vegetable oil. Usually, its solubility would be enhanced through esterification. This work investigated the antioxidant activity and oxidative stability of caffeic acid (CA) and its derivative modified esters by molecular simulation and experiments. Density functional theory (DFT) and molecular dynamic analysis revealed the antioxidant mechanism of CA esters attributing to the comprehensive effects. The lower hydrogen dissociation energy (ΔG) of CA esters with catechol moiety caused the transformation of antioxidant into quinone via the double hydrogen atom transfer reaction. Particularly, the second reduced hydrogen dissociation energy was the keypoint. The strong non-bond energy and hydrogen bond allowed CA esters and oil molecules to interact more efficiently. Hence, the ester moieties enhanced the antioxidant activity with 4.5–6.5 % ΔG reduction compared to CA. Rancimat and DSC assays validated the theoretical predictions. This result shows that the antioxidant activity of CA and its esters could be predicted by this molecular simulation way, which may aid in designing of new polyphenol antioxidant structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.