Abstract

Consumption of vegetables is often the predominant route whereby humans are exposed to the toxic metal Cd. Health impacts arising from Cd consumption may be influenced by changes in the mineral nutrient content of vegetables, which may occur when plants are exposed to Cd. Here, we subjected model root (carrot) and leaf (lettuce) vegetables to soil Cd concentrations of 0.3, 1.5, 3.3, and 9.6μgg(-1) for 10weeks to investigate the effect of Cd exposure on Cd accumulation, growth performance, and mineral nutrient homeostasis. The findings demonstrated that Cd accumulation in lettuce (20.1-71.5μgg(-1)) was higher than that in carrot (3.2-27.5μgg(-1)), and accumulation exceeded the maximum permissible Cd concentration in vegetables when soil contained more than 3.3μgg(-1) of Cd. There was a marked hormetic effect on carrot growth at a soil Cd concentration of 3.3μgg(-1), but increasing the Cd concentration to 9.6μgg(-1) caused decreased growth in both crops. Additionally, in most cases, there was a positive correlation between Cd and the mineral nutrient content of vegetables, which was due to physiological changes in the plants causing increased uptake and/or translocation. This may suggest a general mechanism whereby the plant compensated for disrupted mineral nutrient metabolism by increasing nutrient supply to its tissues. Increased nutrient levels could potentially offset some risks posed to humans by increased Cd levels in crops, and we therefore suggest that changes in mineral nutrient levels should be included more widely in the risk assessment of potentially toxic metal contamination. Graphical abstract The Cd concentration (μg g-1 in dry matter) in the root, shoot and translocation factor (TF) of Cd from root to shoot in the carrot and lettuce, and the percentage of root Cd to the gross Cd contents (%) in carrot (C) and lettuce (D) exposed to soil Cd (0 (control), 1, 3, and 9 μg g-1) for 70 days. Values are means ± SD (n = 5).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.