Abstract
In this paper, we report structure and morphology of polycrystalline La0.7(Ba1-xCax)0.3MnO3 (x = 0; 0.03; 0.05). Basically, these materials are perovskite manganites type with the general structure AMnO3 (A= trivalent rare earth with divalent ion-doped) which have been extensively studied due to their interesting physical properties. It was known that the electron transport in this material influenced by ion doped at A site. Doping with different divalent ions should cause the lattice distortion. Hence, double exchange interaction is enhanced. In this study, we prepared our sample through the sol-gel method. It is show that the method has resulted in powder materials with ultra-fine particle size. The effect of Ca+2 and Ba+2 doping on the structure did not make any phase changing, but the lattice parameter of La0.7(Ba1-xCax)0.3MnO3 decreased below × = 0.03. Microstructure observed by scanning electron microscope to the sintered samples indicated that the microstructure is homogeneous with fine size of equiaxed grain morphology. Microanalysis by EDS confirmed there is no significant different between designated composition and measured one. It is concluded that effect of Ca+2 and Ba+2 doped in LaMnO3 has resulted in microstructural and lattice parameter changes. The doped materials are remaining single phase.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.